Thursday, 22 September 2011

LINQ Queries in C#


A query is an expression that retrieves data from a data source. Queries are usually expressed in a specialized query language. Different languages have been developed over time for the various types of data sources, for example SQL for relational databases and XQuery for XML. Therefore, developers have had to learn a new query language for each type of data source or data format that they must support.
LINQ simplifies this situation by offering a consistent model for working with data across various kinds of data sources and formats.
In a LINQ query, you are always working with objects. You use the same basic coding patterns to query and transform data in XML documents, SQL databases, ADO.NET Datasets, .NET collections, and any other format for which a LINQ provider is available.
All LINQ query operations consist of three distinct actions: 
    1.    Obtain the data source. 
    2.    Create the query. 
    3.    Execute the query.

Ex.
class IntroToLINQ
{       
    static void Main()
    {
        // The Three Parts of a LINQ Query:
        //  1. Data source.
        int[] numbers = new int[7] { 0, 1, 2, 3, 4, 5, 6 };

        // 2. Query creation.
        // numQuery is an IEnumerable<int>
        var numQuery =
            from num in numbers
            where (num % 2) == 0
            select num;

        // 3. Query execution.
        foreach (int num in numQuery)
        {
            Console.Write("{0,1} ", num);
        }
    }
}

Forcing Immediate Execution

Queries that perform aggregation functions over a range of source elements must first iterate over those elements. Examples of such queries are Count, Max, Average, and First. These execute without an explicit foreach statement because the query itself must use foreach in order to return a result. Note also that these types of queries return a single value, not an IEnumerable collection. The following query returns a count of the even numbers in the source array:
var evenNumQuery =
    from num in numbers
    where (num % 2) == 0
    select num;

int evenNumCount = evenNumQuery.Count();

To force immediate execution of any query and cache its results, you can call the ToList(Of TSource) or ToArray(Of TSource) methods.
List<int> numQuery2 =
    (from num in numbers
     where (num % 2) == 0
     select num).ToList();

// or like this:
// numQuery3 is still an int[]

var numQuery3 =
    (from num in numbers
     where (num % 2) == 0
     select num).ToArray();


Filtering

Probably the most common query operation is to apply a filter in the form of a Boolean expression. The filter causes the query to return only those elements for which the expression is true. The result is produced by using the where clause. The filter in effect specifies which elements to exclude from the source sequence. In the following example, only those customers who have an address in London are returned.
var queryLondonCustomers = from cust in customers
                           where cust.City == "London"
                           select cust;

You can use the familiar C# logical AND and OR operators to apply as many filter expressions as necessary in the where clause. For example, to return only customers from "London" AND whose name is "Devon" you would write the following code:
where cust.City=="London" && cust.Name == "Devon"
To return customers from London or Paris, you would write the following code:
where cust.City == "London" || cust.City == "Paris"


Ordering

Often it is convenient to sort the returned data. The orderby clause will cause the elements in the returned sequence to be sorted according to the default comparer for the type being sorted. For example, the following query can be extended to sort the results based on the Name property. Because Name is a string, the default comparer performs an alphabetical sort from A to Z.
var queryLondonCustomers3 =
    from cust in customers
    where cust.City == "London"
    orderby cust.Name ascending
    select cust;


Grouping

The group clause enables you to group your results based on a key that you specify. For example you could specify that the results should be grouped by the City so that all customers from London or Paris are in individual groups. In this case, cust.City is the key.
// queryCustomersByCity is an IEnumerable<IGrouping<string, Customer>>
  var queryCustomersByCity =
      from cust in customers
      group cust by cust.City;

  // customerGroup is an IGrouping<string, Customer>
  foreach (var customerGroup in queryCustomersByCity)
  {
      Console.WriteLine(customerGroup.Key);
      foreach (Customer customer in customerGroup)
      {
          Console.WriteLine("   {0}", customer.Name);
      }
  }
When you end a query with a group clause, your results take the form of a list of lists. Each element in the list is an object that has a Key member and a list of elements that are grouped under that key. When you iterate over a query that produces a sequence of groups, you must use a nested foreach loop. The outer loop iterates over each group, and the inner loop iterates over each group's members.
If you must refer to the results of a group operation, you can use into keyword to create an identifier that can be queried further. The following query returns only those groups that contain more than two customers:
// custQuery is an IEnumerable<IGrouping<string, Customer>>
var custQuery =
    from cust in customers
    group cust by cust.City into custGroup
    where custGroup.Count() > 2
    orderby custGroup.Key
    select custGroup;


Joining

Join operations create associations between sequences that are not explicitly modeled in the data sources. For example you can perform a join to find all the customers and distributors who have the same location. In LINQ the join clause always works against object collections instead of database tables directly.
var innerJoinQuery =
    from cust in customers
    join dist in distributors on cust.City equals dist.City
    select new { CustomerName = cust.Name, DistributorName = dist.Name };

No comments:

Post a Comment